Publications

Selected scientific publications on diving medicine and physiology.

2014 Nov 30
Diving at altitude: From definition to practice
Egi S.M., Pieri M., Marroni A.

Diving above sea level has different motivations for recreational, military, commercial and scientific activities. Despite the apparently wide practice of inland diving, there are three major discrepancies about diving at altitude: threshold elevation that requires changes in sea level procedures; upper altitude limit of the applicability of these modifications; and independent validation of altitude adaptation methods of decompression algorithms. The first problem is solved by converting the normal fluctuation in barometric pressure to an altitude equivalent.

Read more

2014 Oct 1
Flying after diving: in-flight echocardiography after a scuba diving week
Cialoni D, Pieri M, Balestra C, Marroni A.

INTRODUCTION: Flying after diving may increase decompression sickness risk (DCS), but strong evidence indicating minimum preflight surface intervals (PFSI) is missing. METHODS: On return flights after a diving week on a live-aboard, 32 divers were examined by in-flight echocardiography with the following protocol: 1) outgoing flight, no previous dive; 2) during the diving week; 3) before the return flight after a 24-h PFSI; and 4) during the return flight. RESULTS: All divers completed similar multiple repetitive dives during the diving week. All dives were equivalent as to inert gas load and gradient factor upon surfacing. No bubbles in the right heart were found in any diver during the outgoing flight or at the preflight control after a 24-h PFSI following the diving week. A significant increase in the number and grade of bubbles was observed during the return flight. However, bubbles were only observed in 6 of the 32 divers. These six divers were the same ones who developed bubbles after every dive. CONCLUSIONS: Having observed a 24-h preflight interval, the majority of divers did not develop bubbles during altitude exposure; however, it is intriguing to note that the same subjects who developed significant amounts of bubbles after every dive showed equally significant bubble grades during in-flight echocardiography notwithstanding a correct PFSI. This indicates a possible higher susceptibility to bubble formation in certain individuals, who may need longer PFSI before altitude exposure after scuba diving.

Read more

2014 Jun 1
Just say NO to decompression bubbles: is there a real link between nitric oxide and bubble production or reduction in humans?
Balestra C.

Vascular gas emboli (VGE) start forming during the degassing of tissues in the decompression (ascent) phase of the dive when bubble precursors (micronuclei) are triggered to growth. The precise formation mechanism of micronuclei is still debated, with formation sites in facilitating regions with surfactants, hydrophobic surfaces or crevices. Ho wever, significant inter-subject variability to VGE exists for the same diving exposure and VGE may even be reduced with a single pre-dive intervention. The precise link between VGE and endothelial dysfunction observed post dive remains unclear and a nitric oxide (NO) mechanism has been hypothesized.

Read more

2014 Apr 1
Circulatory bubble dynamics: from physical to biological aspects
Papadopoulou V, Tang MX, Balestra C, Eckersley RJ, Karapantsios TD.

Bubbles can form in the body during or after decompression from pressure exposures such as those undergone by scuba divers, astronauts, caisson and tunnel workers. Bubble growth and detachment physics then becomes significant in predicting and controlling the probability of these bubbles causing mechanical problems by blocking vessels, displacing tissues, or inducing an inflammatory cascade if they persist for too long in the body before being dissolved...

Read more

2014 Mar 31
The lymphatic pathway for microbubbles
Balestra C.

The sites for formation of microbubbles that are routinely detected precordially by Doppler after a decompression are still a matter of debate. Firstly, microbubbles could form on the endothelial wall of capillaries, at specific nanometric sites, but the release mechanism of such small emerging entities remains puzzling.

Read more