Selected scientific publications on diving medicine and physiology.

2013 Apr 1
Nitric oxide-related endothelial changes in breath-hold and scuba divers
Theunissen S, Guerrero F, Sponsiello N, Cialoni D, Pieri M, Germonpré P, Obeid G, Tillmans F, Papadopoulou V, Hemelryck W, Marroni A, De Bels D, Balestra C.

OBJECTIVE:Scuba and breath-hold divers are compared to investigate whether endothelial response changes are similar despite different exposure(s) to hyperoxia. DESIGN:14 divers (nine scuba and five breath-holding) performed either one scuba dive (25m/25 minutes) or successive breath-hold dives at a depth of 20 meters, adding up to 25 minutes of immersion time in a diving pool. Flow-mediated dilation (FMD) was measured using echography. Peripheral post-occlusion reactive hyperemia (PORH) was assessed by digital plethysmography and plasmatic nitric oxide (NO) concentration using a nitrate/nitrite colorimetric assay kit. RESULTS:The FMD decreased in both groups. PORH was reduced in scuba divers but increased in breath-hold divers. No difference in circulating NO was observed for the scuba group. Opposingly, an increase in circulating NO was observed for the breath-hold group. CONCLUSION:Some cardiovascular effects can be explained by interaction between NO and superoxide anion during both types of diving ending to less NO availability and reducing FMD. The increased circulating NO in the breath-hold group can be caused by physical exercise. The opposite effects found between FMD and PORH in the breath-hold group can be assimilated to a greater responsiveness to circulating NO in small arteries than in large arteries.

Read more

2013 Mar 1
Can the normobaric oxygen paradox (NOP) increase reticulocyte count after traumatic hip surgery?
Lafère P, Schubert T, De Bels D, Germonpré P, Balestra C.

STUDY OBJECTIVE: To determine if the normobaric oxygen paradox (NOP) was effective in increasing reticulocyte count and reducing postoperative requirements for allogeneic red blood cell transfusion after traumatic hip surgery.

Read more

2013 Mar 1
The ‘normobaric oxygen paradox’: another potential way to use oxygen. CME activity 2013/1.
Balestra C

The 'normobaric oxygen paradox': Another potential way to use oxygen.

Read more

2012 Dec 12
Persistence of critical flicker fusion frequency impairment after a 33 mfw SCUBA dive: evidence of prolonged nitrogen narcosis?
Balestra C, Lafère P, Germonpré P.

One of the possible risks incurred while diving is inert gas narcosis (IGN), yet its mechanism of action remains a matter of controversy. Although providing insights in the basic mechanisms of IGN, research has been primarily limited to animal studies. A human study, in real diving conditions, was needed. Twenty volunteers within strict biometrical criteria (male, age 30-40 years, BMI 20-23, non smoker) were selected. They performed a no-decompression dive to a depth of 33 mfw for 20 min and were assessed by the means of critical flicker fusion frequency (CFFF) measurement before the dive, during the dive upon arriving at the bottom, 5 min before the ascent, and 30 min after surfacing. After this late measurement, divers breathed oxygen for 15 min and were assessed a final time. Compared to the pre-dive value the mean value of each measurement was significantly different (p < 0.001). An increase of CFFF to 104 ± 5.1 % upon arriving to the bottom is followed by a decrease to 93.5 ± 4.3 %. This impairment of CFFF persisted 30 min after surfacing, still decreased to 96.3 ± 8.2 % compared to pre-dive CFFF. Post-dive measures made after 15 min of oxygen were not different from control (without nitrogen supersaturation), 124.4 ± 10.8 versus 124.2 ± 3.9 %. This simple study suggests that IGN (at least partially) depends on gas-protein interactions and that the cerebral impairment persists for at least 30 min after surfacing. This could be an important consideration in situations where precise and accurate judgment or actions are essential.

Read more

2012 Dec 10
The innervation of the axillary arch determined by surface stimulodetection electromyography
Snoeck T, Balestra C, Calberson F, Pouders C, Provyn S.

The axillary arch (AA) is a muscular anatomical variation in the fossa axillaris that has been extensively studied in cadaveric specimens. Within these dissections, different innervations of the AA have been proposed, but this has never been explored in vivo. Knowledge of the innervation of the AA is required in order to better understand its function (e.g. predisposition for certain sports and/or activities, understanding shoulder injuries in overhead sports). Here, we report on the use of surface stimulodetection electromyography (SSEMG) to resolve the innervation of the AA in 20 subjects (12 women, eight men - mean age of 21.3 ± 2.7 years) with a uni- or bilateral AA. SSEMG of each muscle [M. latissimus dorsi (MLD) and M. pectoralis major] was performed with a four-channel electrostimulation measuring system in order to determine the innervation of the AA. The results showed co-contraction of the MLD in 85% of the subjects after AA stimulation. In the remaining subjects, no specific localized response was observed due to non-specific nerve stimulation, inherent to the proximity of the brachial plexus in these individuals. Our findings demonstrate that SSEMG exploration offers a practical and reliable tool for investigating anatomical aspects of muscle innervation in vivo. Using this approach, we conclude that the AA receives the same innervation as the MLD (the N. thoracodorsalis), and may be considered a muscular extension of the latter.

Read more