Wetenschappelijke artikelen
Geselecteerde wetenschappelijke artikelen over duikgeneeskunde en -fysiologie
2017 aug 2
Patent Foramen Ovale (PFO), personality traits, and iterative decompression sickness. Retrospective analysis of 209 cases
Lafère P., Balestra C., Caers D., Germonpré P.

Introduction: There is a need to evaluate the influence of risk factors such as patency of foramen ovale (PFO) or “daredevil” psychological profile on contra-indication policy after a decompression sickness (DCS). Methods: By crossing information obtained from Belgian Hyperbaric Centers, DAN Emergency Hotline, the press, and Internet diving forums, it was possible to be accountable for the majority if not all DCS, which have occurred in Belgium from January 1993 to June 2013.

Lees verder

2012 dec 12
Persistence of critical flicker fusion frequency impairment after a 33 mfw SCUBA dive: evidence of prolonged nitrogen narcosis?
Balestra C, Lafère P, Germonpré P.

One of the possible risks incurred while diving is inert gas narcosis (IGN), yet its mechanism of action remains a matter of controversy. Although providing insights in the basic mechanisms of IGN, research has been primarily limited to animal studies. A human study, in real diving conditions, was needed. Twenty volunteers within strict biometrical criteria (male, age 30-40 years, BMI 20-23, non smoker) were selected. They performed a no-decompression dive to a depth of 33 mfw for 20 min and were assessed by the means of critical flicker fusion frequency (CFFF) measurement before the dive, during the dive upon arriving at the bottom, 5 min before the ascent, and 30 min after surfacing. After this late measurement, divers breathed oxygen for 15 min and were assessed a final time. Compared to the pre-dive value the mean value of each measurement was significantly different (p < 0.001). An increase of CFFF to 104 ± 5.1 % upon arriving to the bottom is followed by a decrease to 93.5 ± 4.3 %. This impairment of CFFF persisted 30 min after surfacing, still decreased to 96.3 ± 8.2 % compared to pre-dive CFFF. Post-dive measures made after 15 min of oxygen were not different from control (without nitrogen supersaturation), 124.4 ± 10.8 versus 124.2 ± 3.9 %. This simple study suggests that IGN (at least partially) depends on gas-protein interactions and that the cerebral impairment persists for at least 30 min after surfacing. This could be an important consideration in situations where precise and accurate judgment or actions are essential.

Lees verder

2021 sep 27
Physiological and Clinical Impact of Repeated Inhaled Oxygen Variation on Erythropoietin Levels in Patients After Surgery
Khalife M, Ben Aziz M, Balestra C, Valsamis J & Sosnowski M.

The “Normobaric Oxygen Paradox” (NOP) is a physiologic mechanism that induces an increase of endogenous erythropoietin (EPO) production by creating a state of relative hypoxia in subjects previously exposed to hyperoxia, followed by a rapid return to normoxia.

Lees verder

2020 jul 23
Physiological characteristics associated with increased resistance to decompression sickness in male and female rats
Lautridou J, Dugrenot E, Amerand A, Guernec A, Pichavant-Rafini K, Goanvec C, Inizan M, Albacete G, Belhomme M, Galinat H, Lafere P, Balestra C, Moisan C, Buzzacott P & Guerrero F.

Decompression sickness (DCS) is a complex and poorly understood systemic disease with wide interindividual resistance variability. We selectively bred rats with a threefold greater resistance to DCS than standard ones. To investigate possible physiological mechanisms underlying the resistance to DCS, including sex-related differences in these mechanisms, 15 males and 15 females resistant to DCS were compared with aged-matched standard Wistar males (n = 15) and females (n = 15). None of these individuals had been previously exposed to hyperbaric treatment. Comparison of the allelic frequencies of single nucleotide polymorphisms (SNPs) showed a difference of one SNP located on the X chromosome.

Lees verder

2021 aug 25
Physiological effects of mixed-gas deep sea dives using a closed-circuit rebreather: a field pilot study
Dugrenot E, Balestra C, Gouin E, L'Her E & Guerrero F.

Purpose: Deep diving using mixed gas with closed-circuit rebreathers (CCRs) is increasingly common. However, data regarding the effects of these dives are still scarce. This preliminary field study aimed at evaluating the acute effects of deep (90-120 msw) mixed-gas CCR bounce dives on lung function in relation with other physiological parameters. Methods: Seven divers performed a total of sixteen open-sea CCR dives breathing gas mixture of helium, nitrogen and oxygen (trimix) within four days at 2 depths (90 and 120 msw). Spirometric parameters, SpO2, body mass, hematocrit, short term heart rate variability (HRV) and critical flicker fusion frequency (CFFF) were measured at rest 60 min before the dive and 120 min after surfacing.

Lees verder