Selected scientific publications on diving medicine and physiology.
L'eau est une matière plurielle et ambivalente. Symboliquement associée à la purification, cause régulière de multiples ravages humains et écologiques, elle est aussi devenue un vaste terrain de jeu, d'expériences corporelles, d'immersions en tous genres. Retenir son souffle pour aller loin, profond, ou simplement rester longtemps immergé, passionne des pratiquants toujours plus nombreux. Il s'agit bien souvent de « se fondre » dans le milieu, repousser ses limites et surtout se reconnecter avec soi-même, explorer son propre corps et se sentir « bien ». L'apprentissage de l'apnée révèle les capacités d'adaptation du corps humain, actualisant des ressources inédites. Elle favorise l'émersion de sensations nouvelles du corps vivant.
Read moreBackground: Several mechanisms allow humans to resist the extreme conditions encountered during breath-hold diving. Available nitric oxide (NO) is one of the major contributors to such complex adaptations at depth and oxidative stress is one of the major collateral effects of diving. Due to technical difficulties, these biomarkers have not so far been studied in vivo while at depth. The aim of this study is to investigate nitrate and nitrite (NOx) concentration, total antioxidant capacity (TAC) and lipid peroxidation (TBARS) before, during, and after repetitive breath-hold dives in healthy volunteers. Materials and Methods: Blood plasma, obtained from 14 expert breath-hold divers, was tested for differences in NOx, TAC, and TBARS between pre-dive, bottom, surface, 30 and 60 min post-dive samples.
Read moreBACKGROUND: Divers try to limit risks associated with their sport, for instance by breathing enriched air nitrox (EANx) instead of air. This double blinded, randomized trial was designed to see if the use of EANx could effectively improve cognitive performance while diving. METHODS: Eight volunteers performed two no-decompression dry dives breathing air or EANx for 20 min at 0.4 MPa. Cognitive functions were assessed with a computerized test battery, including MathProc and Ptrail. Measurements were taken before the dive, upon arrival and after 15 min at depth, upon surfacing, and at 30 min postdive. After each dive subjects were asked to identify the gas they had just breathed.
Read morePURPOSE: A reduction in ambient pressure or decompression from scuba diving can result in ultrasound-detectable venous gas emboli (VGE). These environmental exposures carry a risk of decompression sickness (DCS) which is mitigated by adherence to decompression schedules; however, bubbles are routinely observed for dives well within these limits and significant inter-personal variability in DCS risk exists. Here, we assess the variability and evolution of VGE for 2 h post-dive using echocardiography, following a standardized pool dive in calm warm conditions.
Read moreThe term “normobaric oxygen paradox” (NOP), describes the response to the return to normoxia after a hyperoxic event, sensed by tissues as oxygen shortage, and resulting in up-regulation of the Hypoxia-inducible factor 1α (HIF-1α) transcription factor activity. The molecular characteristics of this response have not been yet fully characterized. Herein, we report the activation time trend of oxygen-sensitive transcription factors in human peripheral blood mononuclear cells (PBMCs) obtained from healthy subjects after one hour of exposure to mild (MH), high (HH) and very high (VHH) hyperoxia, corresponding to 30%, 100%, 140% O2, respectively.
Read more199 adet sonuçdan 101 - 105 arası gösteriliyor.