BACKGROUND: The risk of developing decompression illness (DCI) in divers with a patent foramen ovale (PFO) has not been directly determined so far; neither has it been assessed in relation to the PFO's size. METHODS :In 230 scuba divers (age 39+/-8 years), contrast trans-oesophageal echocardiography (TEE) was performed for the detection and size grading (0-3) of PFO. Prior to TEE, the study individuals answered a detailed questionnaire about their health status and about their diving habits and accidents. For inclusion into the study, > or =200 dives and strict adherence to decompression tables were required. RESULTS: Sixty-three divers (27%) had a PFO. Overall, the absolute risk of suffering a DCI event was 2.5 per 10(4) dives. There were 18 divers (29%) with, and 10 divers (6%) without, PFO who had experienced > or =1 major DCI events P=0.016. In the group with PFO, the incidence per 10(4) dives of a major DCI, a DCI lasting longer than 24 h and of being treated in a decompression chamber amounted to 5.1 (median 0, interquartile range [IQR] 0-10.0), 1.9 (median 0, IQR 0-4.0) and 3.6 (median 0, IQR 0-9.8), respectively and was 4.8-12.9-fold higher than in the group without PFO (P<0.001). The risk of suffering a major DCI, of a DCI lasting longer than 24 h and of being treated by recompression increased with rising PFO size. CONCLUSION: The presence of a PFO is related to a low absolute risk of suffering five major DCI events per 10(4) dives, the odds of which is five times as high as in divers without PFO. The risk of suffering a major DCI parallels PFO size.
Čtěte víceUsing a standardized contrast-enhanced transesophageal echocardiographic technique, a group of divers was reexamined for the presence and size of patent foramen ovale (PFO) 7 years after their initial examinations. Unexpected but significant increases in the prevalence and size of PFO were found, suggesting a possible increasing risk for decompression sickness in these divers over time.
Čtěte víceThe purpose of this study was to define the optimal irradiation conditions of a KTP laser during root planing treatment. METHODS: The surfaces of 60 single-root human teeth were scaled with conventional instruments before lasing. The pulpal temperature increase was measured by means of one thermocouple placed in the pulp chamber and a second one placed on the root surface at 1 mm from the irradiation site. The influence of variables of coloration by Acid Red 52 (photosensitizer), scanning speed, dentin thickness, and probe position was analyzed for a constant exposure time of 15 sec and 500 mw (spot size diameter, 0.5 mm). The pulpal temperature was below 3 degrees C for the adjustments.
Čtěte víceRenal (peritubular) tissue hypoxia is a well-known physiological trigger for erythropoietin (EPO) production. We investigated the effect of rebound relative hypoxia after hyperoxia obtained under normo- and hyperbaric oxygen breathing conditions. A group of 16 healthy volunteers were investigated before and after a period of breathing 100% normobaric oxygen for 2 h and a period of breathing 100% oxygen at 2.5 ATA for 90 min (hyperbaric oxygen). Serum EPO concentration was measured using a radioimmunoassay at various time points during 24-36 h. A 60% increase (P < 0.001) in serum EPO was observed 36 h after normobaric oxygen. In contrast, a 53% decrease in serum EPO was observed at 24 h after hyperbaric oxygen. Those changes were not related to the circadian rhythm of serum EPO of the subjects. These results indicate that a sudden and sustained decrease in tissue oxygen tension, even above hypoxia thresholds (e.g., after a period of normobaric oxygen breathing), may act as a trigger for EPO serum level. This EPO trigger, the "normobaric oxygen paradox," does not appear to be present after hyperbaric oxygen breathing.
Čtěte víceIn our previous research, a deep 5-min stop at 15 msw (50 fsw), in addition to the typical 3-5 min shallow stop, significantly reduced precordial Doppler detectable bubbles (PDDB) and "fast" tissue compartment gas tensions during decompression from a 25 msw (82 fsw) dive; the optimal ascent rate was 10 msw (30 fsw/min). Since publication of these results, several recreational diving agencies have recommended empirical stop times shorter than the 5 min stops that we used, stops of as little as 1 min (deep) and 2 min (shallow). In our present study, we clarified the optimal time for stops by measuring PDDB with several combinations of deep and shallow stop times following single and repetitive open-water dives to 25 msw (82 fsw) for 25 mins and 20 minutes respectively; ascent rate was 10 msw/min (33 fsw). Among 15 profiles, stop time ranged from 1 to 10 min for both the deep stops (15 msw/50 fsw) and the shallow stops (6 msw/20 fsw). Dives with 2 1/2 min deep stops yielded the lowest PDDB scores--shorter or longer deep stops were less effective in reducing PDDB. The results confirm that a deep stop of 1 min is too short--it produced the highest PDDB scores of all the dives. We also evaluated shallow stop times of 5, 4, 3, 2 and 1 min while keeping a fixed time of 2.5 min for the deep stop; increased times up to 10 min at the shallow stop did not further reduce PDDB. While our findings cannot be extrapolated beyond these dive profiles without further study, we recommend a deep stop of at least 2 1/2 mins at 15 msw (50 fsw) in addition to the customary 6 msw (20 fsw) for 3-5 mins for 25 meter dives of 20 to 25 minutes to reduce PDDB.
Čtěte víceJe zobrazeno 141 - 145 položek z celkového počtu 193.