Background and Objective: Several cases of central serous chorioretinopathy (CSC) in divers have been reported in our medical retina center over the past few years. This study was designed to evaluate possible changes induced by SCUBA diving in ophthalmic parameters and especially subfoveal choroidal thickness (SFCT), since the choroid seems to play a crucial role in physiopathology of CSC.
En savoir plusExcessive fluid loss triggered by hyperbaric pressure, water immersion and hot water suits causes saturation divers to be at risk of dehydration. Dehydration is associated with reductions in mental and physical performance, resulting in less effective work and an increased risk of work-related accidents. In this study we examined the hydration status of 11 male divers over 19 days of a commercial saturation diving campaign to a working depth of 74 m, using two non-invasive methods: Bioelectrical impedance analysis (BIA) and urine specific gravity (USG).
En savoir plusIntroduction: Technical diving is increasing in popularity in Finland, and therefore the number of decompression illness (DCI) cases is also increasing among technical divers. Although hyperbaric oxygen treatment (HBOT) remains the standard of care, there are anecdotal reports of technical divers treating mild DCI symptoms themselves and not seeking a medical evaluation and possible recompression therapy. This study aimed to make an epidemiologic inventory of technical diving-related DCI symptoms, to establish the incidence of self-treatment and to determine the apparent effectiveness of different treatment methods.
En savoir plusBackground and Objectives: Saturation diving is a technique used in commercial diving. Decompression sickness (DCS) was the main concern of saturation safety, but procedures have evolved over the last 50 years and DCS has become a rare event. New needs have evolved to evaluate the diving and decompression stress to improve the flexibility of the operations (minimum interval between dives, optimal oxygen levels, etc.).
En savoir plusPurpose: Divers can experience cognitive impairment due to inert gas narcosis (IGN) at depth. Brain-derived neurotrophic factor (BDNF) rules neuronal connectivity/metabolism to maintain cognitive function and protect tissues against oxidative stress (OxS). Dopamine and glutamate enhance BDNF bioavailability. Thus, we hypothesized that lower circulating BDNF levels (via lessened dopamine and/or glutamate release) underpin IGN in divers, while testing if BDNF loss is associated with increased OxS.
En savoir plusAffichage des résultats 31 - 35 parmi 202.